research
Relationship between Allan variances and Kalman Filter parameters
- Publication date
- Publisher
Abstract
A relationship was constructed between the Allan variance parameters (H sub z, H sub 1, H sub 0, H sub -1 and H sub -2) and a Kalman Filter model that would be used to estimate and predict clock phase, frequency and frequency drift. To start with the meaning of those Allan Variance parameters and how they are arrived at for a given frequency source is reviewed. Although a subset of these parameters is arrived at by measuring phase as a function of time rather than as a spectral density, they all represent phase noise spectral density coefficients, though not necessarily that of a rational spectral density. The phase noise spectral density is then transformed into a time domain covariance model which can then be used to derive the Kalman Filter model parameters. Simulation results of that covariance model are presented and compared to clock uncertainties predicted by Allan variance parameters. A two state Kalman Filter model is then derived and the significance of each state is explained