research
An algorithm to design finite field multipliers using a self-dual normal basis
- Publication date
- Publisher
Abstract
Finite field multiplication is central in the implementation of some error-correcting coders. Massey and Omura have presented a revolutionary design for multiplication in a finite field. In their design, a normal base is utilized to represent the elements of the field. The concept of using a self-dual normal basis to design the Massey-Omura finite field multiplier is presented. Presented first is an algorithm to locate a self-dual normal basis for GF(2 sup m) for odd m. Then a method to construct the product function for designing the Massey-Omura multiplier is developed. It is shown that the construction of the product function base on a self-dual basis is simpler than that based on an arbitrary normal base