research
Propagation through Martian dust at 8.5 and 32 GHz
- Publication date
- Publisher
Abstract
Independent studies of attenuation of X-band (8.5 GHz) and Ka-band (32 Ghz) radio signals when traversing Martian dust were carried out. These analyses turned out remarkably similar. The computational method is essentially that of T. S. Chu but uses observed optical depth at 0.67 microns rather than visibility as the measure of optical attenuation from which to derive the microwave attenuation. An awkwardness in the approach is that the size distribution of Martian dust particles is not well known, but the mean is probably around 4 microns, whereas in the terrestrial case it is nearer 10 microns. As a consequence, there will be a larger tail of particles still in the Mie regime in the Martian case as compared to the terrestrial one. The computational error will, therefore, be somewhat larger for Martian than Earth-bound dust. Fortunately, the indicated attenuations are small enough for the worst case (1.3 dB at 32 GHz) that the error is academic