Thermomechanical characterization of Hastelloy-X under uniaxial cyclic loading


In most high-temperature engineering applications, components are subjected to complex combinations of thermal and mechanical loading during service. A number of viscoplastic constitutive models were proposed which potentially can provide mathematical descriptions of material response under such conditions. Implementation of these models into large finite element codes such as MARC has already resulted in much improved inelastic analysis capability for hot-section aircraft engine components. However, a number of questions remain regarding the validity of methods adopted in characterizing these constitutive models for particular high-temperature materials. One area of concern is that the majority of experimental data available for this purpose are determined under isothermal conditions. This is in contrast to service conditions which, as noted above, almost always involve some form of thermal cycling. The obvious question arises as to whether a constitutive model characterized using an isothermal data base can adequately predict material response under thermomechanical conditions. An experimental program was initiated within the HOST program to address this particular concern. The results of the most recent isothermal and thermomechanical experiments are described

    Similar works