Numerical study of the effects of boundary conditions on the measurement and calibration of gardon type heat flux sensors


To monitor the high-intensity heat flux conditions that occur in the space shuttle main engine (SSME), it is necessary to use specifically designed heat flux sensors. These sensors, which are of the Gardon-type, are exposed on the measuring face to high-intensity radiative and convective heat fluxes and on the other face to convective cooling. To improve the calibration and measurement accuracy of these gauges, researchers are studing the effect that the thermal boundary conditions have on gauge performance. In particular, they are studying how convective cooling effects the field inside the sensor and the measured heat flux. The first phase of this study involves a numerical study of these effects. Subsequent phases will involve experimental verification. A computer model of the heat transfer around a Garden-type heat flux sensor was developed. Two specific geometries are being considered are: (1) heat flux sensor mounted on a flat-plate; and (2) heat flux sensor mounted at the stagnation point of a circular cylinder. Both of these configurations are representative of the use of heat flux sensors in the components of the SSME. The purpose of the analysis is to obtain a temperature distribution as a function of the boundary conditions

    Similar works