research
Stratospheric effects of solar ultraviolet variations on the solar rotation time scale
- Publication date
- Publisher
Abstract
A summary is presented of some current work on measurement and interpretation of stratospheric ozone and temperature responses to observed short term solar ultraviolet variations. Although some studies have yielded provisional evidence for a nearly in-phase ozone-solar cycle relationship, they extend at most over only one or two 11 year cycles so the statistical significance of the correlations is not large. Similarly, the relatively short lengths of individual satellite data sets combined with the problem of estimating the effect of changes in instrument sensitivity (drift) during the observing period have complicated attempts to infer long term or solar cycle ozone trends. The solar rotation and active region development time scale provides an alternate time scale for which detailed studies of middle atmospheric ozone and temperature responses to solar ultraviolet variability are currently possible using available satellite data sets. At tropical latitudes where planetary wave amplitudes are relatively small, clear correlative evidence for the existence of middle atmospheric ozone and temperature responses to short term solar ultraviolet variations has been obtained in recent years. These measurements will ultimately allow improved empirical and theoretical calculations of longer term solar induced ozone and temperature variations at low and middle latitudes