research

Computational parametric study of sidewall-compression scramjet inlet performance at Mach 10

Abstract

A computational parametric study of three-dimensional, sidewall-compression scramjet inlets was performed to identify the effects of geometric parameters on inlet performance. The parameters were the leading-edge sweep angle, varied between 30 and 60 deg, and the leading-edge position of the cowl, located at the throat and at two forward positions. A laminar boundary layer with cold-wall (T(sub wall) = 300 K (540 R)) boundary conditions was imposed. The parametric study was performed for a Mach number of 10 and a unit free-stream Reynolds number of 7.06 x 10(exp 6) per meter (2.15 x 10(exp 6) per foot) at a geometric contraction ratio of 5. The performance of each configuration was evaluated in terms of the mass capture, throat Mach number, total pressure recovery, kinetic energy efficiency, and internal compression. One computation of an unswept configuration was included as a baseline to determine the effects of introducing leading-edge sweep on the flow-field parameters. The purpose of the computational parametric study was to perform a trade-off of the effects of various parameters on the global performance of the inlet. Although no single optimal configuration emerged, trade-offs among the stated performance parameters identified a leading-edge sweep angle of 45 deg as possessing the most attractive performance characteristics

    Similar works