slides

NASA supporting studies for microgravity research on eye movements

Abstract

The purpose of the work on this project was to provide support for ground-based studies on the effects of gravity on eye movements. The effects of microgravity on the optokinetic eye movements of humans are investigated. OKN was induced by having subjects watch 3.3 deg stripes moving at 35 deg/s for 45 s in a binocular, head-fixed apparatus. The field (hor., 88 deg; vert., 72 deg), was rotated about axes that were upright or tilted 45 deg or 90 deg. The head was upright or tilted 45 deg on the body. Head-horizontal (yaw axis) and head-vertical (pitch axis) components of OKN were recorded with electro-oculography (EOG). Slow phase velocity vectors were determined relative to gravity. With the head upright, the axis of eye rotation during yaw axis OKN was coincident with the stimulus axis and the spatial vertical. With the head tilted 45 deg on the body, a persistent vertical component of eye velocity developed during yaw axis stimulation, and there was an average shift of the axis of eye rotation toward the spatial vertical of approximately 18 deg in six subjects. During oblique optokinetic stimulation with the head upright, the axis of eye rotation shifted 12 deg toward the spatial vertical. When the head was tilted, the axis of eye rotation rotated to the other side of the spatial vertical by 5.4 deg during the same oblique stimulation. This counter-rotation of the axis of eye rotation is similar to the 'Muller (E) effect', in which the perception of the upright counter-rotates to the opposite side of the spatial vertical when subjects are tilted in darkness. The data were simulated by a model of OKN. Despite the short OKAN time constants, strong horizontal to vertical cross-coupling was produced if the horizontal and vertical time constants were in proper ratio, and there was no suppression of nystagmus orthogonal to the stimulus direction. This shows that the spatial orientation of OKN can be due to a restructuring of the system matrix of velocity storage as a function of gravity. It is concluded that although human OKAN is weak, velocity storage orients the slow phase velocity of OKN towards the spatial vertical

    Similar works