Micro-blogging services can track users' geo-locations when users check-in
their places or use geo-tagging which implicitly reveals locations. This "geo
tracking" can help to find topics triggered by some events in certain regions.
However, discovering such topics is very challenging because of the large
amount of noisy messages (e.g. daily conversations). This paper proposes a
method to model geographical topics, which can filter out irrelevant words by
different weights in the local and global contexts. Our method is based on the
Latent Dirichlet Allocation (LDA) model but each word is generated from either
a local or a global topic distribution by its generation probabilities. We
evaluated our model with data collected from Weibo, which is currently the most
popular micro-blogging service for Chinese. The evaluation results demonstrate
that our method outperforms other baseline methods in several metrics such as
model perplexity, two kinds of entropies and KL-divergence of discovered
topics