We introduce a probabilistic extension of Levy's Call-By-Push-Value. This
extension consists simply in adding a " flipping coin " boolean closed atomic
expression. This language can be understood as a major generalization of
Scott's PCF encompassing both call-by-name and call-by-value and featuring
recursive (possibly lazy) data types. We interpret the language in the
previously introduced denotational model of probabilistic coherence spaces, a
categorical model of full classical Linear Logic, interpreting data types as
coalgebras for the resource comonad. We prove adequacy and full abstraction,
generalizing earlier results to a much more realistic and powerful programming
language