Information-theoretic measures such as the entropy, cross-entropy and the
Kullback-Leibler divergence between two mixture models is a core primitive in
many signal processing tasks. Since the Kullback-Leibler divergence of mixtures
provably does not admit a closed-form formula, it is in practice either
estimated using costly Monte-Carlo stochastic integration, approximated, or
bounded using various techniques. We present a fast and generic method that
builds algorithmically closed-form lower and upper bounds on the entropy, the
cross-entropy and the Kullback-Leibler divergence of mixtures. We illustrate
the versatile method by reporting on our experiments for approximating the
Kullback-Leibler divergence between univariate exponential mixtures, Gaussian
mixtures, Rayleigh mixtures, and Gamma mixtures.Comment: 20 pages, 3 figure