The large number of user-generated videos uploaded on to the Internet
everyday has led to many commercial video search engines, which mainly rely on
text metadata for search. However, metadata is often lacking for user-generated
videos, thus these videos are unsearchable by current search engines.
Therefore, content-based video retrieval (CBVR) tackles this metadata-scarcity
problem by directly analyzing the visual and audio streams of each video. CBVR
encompasses multiple research topics, including low-level feature design,
feature fusion, semantic detector training and video search/reranking. We
present novel strategies in these topics to enhance CBVR in both accuracy and
speed under different query inputs, including pure textual queries and query by
video examples. Our proposed strategies have been incorporated into our
submission for the TRECVID 2014 Multimedia Event Detection evaluation, where
our system outperformed other submissions in both text queries and video
example queries, thus demonstrating the effectiveness of our proposed
approaches