Self-paced learning (SPL) mimics the cognitive mechanism of humans and
animals that gradually learns from easy to hard samples. One key issue in SPL
is to obtain better weighting strategy that is determined by minimizer
function. Existing methods usually pursue this by artificially designing the
explicit form of SPL regularizer. In this paper, we focus on the minimizer
function, and study a group of new regularizer, named self-paced implicit
regularizer that is deduced from robust loss function. Based on the convex
conjugacy theory, the minimizer function for self-paced implicit regularizer
can be directly learned from the latent loss function, while the analytic form
of the regularizer can be even known. A general framework (named SPL-IR) for
SPL is developed accordingly. We demonstrate that the learning procedure of
SPL-IR is associated with latent robust loss functions, thus can provide some
theoretical inspirations for its working mechanism. We further analyze the
relation between SPL-IR and half-quadratic optimization. Finally, we implement
SPL-IR to both supervised and unsupervised tasks, and experimental results
corroborate our ideas and demonstrate the correctness and effectiveness of
implicit regularizers.Comment: 12 pages, 3 figure