research

iResum: a new paradigm for resumming gravitational wave amplitudes

Abstract

We introduce a new, resummed, analytical form of the post-Newtonian (PN), factorized, multipolar amplitude corrections fâ„“mf_{\ell m} of the effective-one-body (EOB) gravitational waveform of spinning, nonprecessing, circularized, coalescing black hole binaries (BBHs). This stems from the following two-step paradigm: (i) the factorization of the orbital (spin-independent) terms in fâ„“mf_{\ell m}; (ii) the resummation of the residual spin (or orbital) factors. We find that resumming the residual spin factor by taking its inverse resummed (iResum) is an efficient way to obtain amplitudes that are more accurate in the strong-field, fast-velocity regime. The performance of the method is illustrated on the â„“=2\ell=2 and m=(1,2)m=(1,2) waveform multipoles, both for a test-mass orbiting around a Kerr black hole and for comparable-mass BBHs. In the first case, the iResum fâ„“mf_{\ell m}'s are much closer to the corresponding "exact" functions (obtained solving numerically the Teukolsky equation) up to the light-ring, than the nonresummed ones, especially when the black-hole spin is nearly extremal. The iResum paradigm is also more efficient than including higher post-Newtonian terms (up to 20PN order): the resummed 5PN information yields per se a rather good numerical/analytical agreement at the last-stable-orbit, and a well-controlled behavior up to the light-ring. For comparable mass binaries (including the highest PN-order information available, 3.5PN), comparing EOB with Numerical Relativity (NR) data shows that the analytical/numerical fractional disagreement at merger, without NR-calibration of the EOB waveform, is generically reduced by iResum, from a 40%40\% of the usual approach to just a few percents. This suggests that EOBNR waveform models for coalescing BBHs may be improved using iResum amplitudes.Comment: 6 pages, 7 figures. Improved discussion for the comparable-mass cas

    Similar works