This paper reviews two techniques that have been recently published for 3D
profilometry and proposes one shot profilometry using iterative two-step
temporal phase-unwrapping by combining the composite fringe projection and the
iterative two-step temporal phase unwrapping algorithm. In temporal phase
unwrapping, many images with different frequency fringe pattern are needed to
project which would take much time. In order to solve this problem, Ochoa
proposed a phase unwrapping algorithm based on phase partitions using a
composite fringe, which only needs projecting one composite fringe pattern with
four kinds of frequency information to complete the process of 3D profilometry.
However, we found that the fringe order determined through the construction of
phase partitions tended to be imprecise. Recently, we proposed an iterative
two-step temporal phase unwrapping algorithm, which can achieve high
sensitivity and high precision shape measurement. But it needs multiple frames
of fringe images which would take much time. In order to take into account both
the speed and accuracy of 3D shape measurement, we get a new, and more accurate
unwrapping method based on composite fringe pattern by combining these two
techniques. This method not only retains the speed advantage of Ochoa's
algorithm, but also greatly improves its measurement accuracy. Finally, the
experimental evaluation is conducted to prove the validity of the proposed
method, and the experimental results show that this method is feasible.Comment: 14 pages, 15 figure