From the viscous Cahn-Hilliard equation to a regularized forward-backward parabolic equation


A rigorous proof is given for the convergence of the solutions of a viscous Cahn-Hilliard system to the solution of the regularized version of the forward-backward parabolic equation, as the coefficient of the diffusive term goes to 0. Non-homogenous Neumann boundary condition are handled for the chemical potential and the subdifferential of a possible non-smooth double-well functional is considered in the equation. An error estimate for the difference of solutions is also proved in a suitable norm and with a specified rate of convergence.Comment: Key words and phrases: Cahn-Hilliard system, forward-backward parabolic equation, viscosity, initial-boundary value problem, asymptotic analysis, well-posednes

    Similar works