Modelling of massive stars and supernovae (SNe) plays a crucial role in
understanding galaxies. From this modelling we can derive fundamental
constraints on stellar evolution, mass-loss processes, mixing, and the products
of nucleosynthesis. Proper account must be taken of all important processes
that populate and depopulate the levels (collisional excitation, de-excitation,
ionization, recombination, photoionization, bound-bound processes). For the
analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group
elements are particularly important. Unfortunately little data is currently
available and most noticeably absent are the photoionization cross-sections for
the Fe-peaks which have high abundances in SNe. Important interactions for both
photoionization and electron-impact excitation are calculated using the
relativistic Dirac Atomic R-matrix Codes (DARC) for low ionization stages of
cobalt. All results are calculated up to photon energies of 45 eV and electron
energies up to 20 eV. The wavefunction representation of Co III has been
generated using GRASP0 by including the dominant 3d7, 3d6[4s, 4p],
3p43d9 and 3p63d9 configurations, resulting in 292 fine structure
levels. Electron-impact collision strengths and Maxwellian averaged effective
collision strengths across a wide range of astrophysically relevant
temperatures are computed for Co III. In addition, statistically weighted
level-resolved ground and metastable photoionization cross-sections are
presented for Co II and compared directly with existing work.Comment: 11 pages, 8 figures and 4 table