The Continuous Spontaneous Localization (CSL) model has been proposed as a
possible solution to the quantum measurement problem by modifying the
Schr\"{o}dinger equation. In this work, we apply the CSL model to two
cosmological models of the early Universe: the matter bounce scenario and slow
roll inflation. In particular, we focus on the generation of the classical
primordial inhomogeneities and anisotropies that arise from the dynamical
evolution, provided by the CSL mechanism, of the quantum state associated to
the quantum fields. In each case, we obtained a prediction for the shape and
the parameters characterizing the primordial spectra (scalar and tensor), i.e.
the amplitude, the spectral index and the tensor-to-scalar ratio. We found that
there exist CSL parameter values, allowed by other non-cosmological
experiments, for which our predictions for the angular power spectrum of the
CMB temperature anisotropy are consistent with the best fit canonical model to
the latest data released by the Planck Collaboration.Comment: 27 pages, including 6 figures, 2 tables and one Appendix. Final
version. Accepted in EPJ