Ghost imaging is a fascinating process, where light interacting with an
object is recorded without resolution, but the shape of the object is
nevertheless retrieved, thanks to quantum or classical correlations of this
interacting light with either a computed or detected random signal. Recently,
ghost imaging has been extended to a time object, by using several thousands
copies of this periodic object. Here, we present a very simple device, inspired
by computational ghost imaging, that allows the retrieval of a single
non-reproducible, periodic or non-periodic, temporal signal. The reconstruction
is performed by a single shot, spatially multiplexed, measurement of the
spatial intensity correlations between computer-generated random images and the
images, modulated by a temporal signal, recorded and summed on a chip CMOS
camera used with no temporal resolution. Our device allows the reconstruction
of either a single temporal signal with monochrome images or
wavelength-multiplexed signals with color images