Explosion of white dwarfs harboring hybrid CONe cores


Recently, it has been found that off-centre carbon burning in a subset of intermediate-mass stars does not propagate all the way to the center, resulting in a class of hybrid CONe cores. Here, we consider the possibility that stars hosting these hybrid CONe cores might belong to a close binary system and, eventually, become white dwarfs accreting from a non-degenerate companion at rates leading to a supernova explosion. We have computed the hydrodynamical phase of the explosion of Chandrasekhar-mass white dwarfs harboring hybrid cores, assuming that the explosion starts at the center, either as a detonation (as may be expected in some degenerate merging scenarios) or as a deflagration (that afterwards transitions into a delayed detonation). We assume these hybrid cores are made of a central CO volume, of mass M(CO), surrounded by an ONe shell. We show that, in case of a pure detonation, a medium-sized CO-rich region, M(CO)<0.4 Msun, results in the ejection of a small fraction of the mantle while leaving a massive bound remnant. Part of this remnant is made of the products of the detonation, Fe-group nuclei, but they are buried in its inner regions, unless convection is activated during the ensuing cooling and shrinking phase of the remnant. In contrast, and somehow paradoxically, delayed detonations do not leave remnants but for the minimum M(CO) we have explored, M(CO)=0.2 Msun, and even in this case the remnant is as small as 0.13 Msun. The ejecta produced by these delayed detonations are characterized by slightly smaller masses of 56Ni and substantially smaller kinetic energies than obtained for a delayed detonation of a 'normal' CO white dwarf. The optical emission expected from these explosions would hardly match the observational properties of typical Type Ia supernovae, although they make interesting candidates for the subluminous class of SN2002cx-like or SNIax.Comment: Accepted for Astronomy and Astrophysics, 11 pages, 4 figure

    Similar works