research

A γγ\gamma\gamma Collider for the 750 GeV Resonant State

Abstract

Recent data collected by ATLAS and CMS at 13 TeV collision energy of the LHC indicate the existence of a new resonant state ϕ\phi with a mass of 750 GeV decaying into two photons γγ\gamma\gamma. The properties of ϕ\phi should be studied further at the LHC and also future colliders. Since only ϕγγ\phi \to \gamma\gamma decay channel has been measured, one of the best ways to extract more information about ϕ\phi is to use a γγ\gamma\gamma collider to produce ϕ\phi at the resonant energy. In this work we show how a γγ\gamma\gamma collider helps to verify the existence of ϕ\phi and to provide some of the most important information about the properties of ϕ\phi, such as branching fractions of ϕV1V2\phi\to V_1V_2. Here ViV_i can be γ\gamma, ZZ, or W±W^\pm. We also show that by studying angular distributions of the final γ\gamma's in γγϕγγ\gamma\gamma \to \phi \to \gamma\gamma, one can obtain crucial information about whether this state is a spin-0 or a spin-2 state.Comment: ReTex, 12 page with 6 figures. Expanded discussion on distinguishing spin-0 and spin-2 cases. Several figures adde

    Similar works