research

Infinite horizon sparse optimal control

Abstract

A class of infinite horizon optimal control problems involving LpL^p-type cost functionals with 0<p10<p\leq 1 is discussed. The existence of optimal controls is studied for both the convex case with p=1p=1 and the nonconvex case with 0<p<10<p<1, and the sparsity structure of the optimal controls promoted by the LpL^p-type penalties is analyzed. A dynamic programming approach is proposed to numerically approximate the corresponding sparse optimal controllers

    Similar works