Active matter is a new class of material, intrinsically out-of equilibrium
with intriguing properties. So far, the recent upsurge of studies has mostly
focused on the spontaneous behavior of these systems --in the absence of
external constraints or driving--. Yet, many real life systems evolve under
constraints, being both submitted to flow and various taxis. In the present
work, we demonstrate a new experimental system which opens up the way for
quantitative investigations, and discriminating examinations, of the
challenging theoretical description of such systems. We explore the behavior of
magnetotactic bacteria as a particularly rich and versatile class of driven
matter, which behavior can be studied under contrasting and contradicting
stimuli. In particular we demonstrate that the competing driving of an
orienting magnetic field and hydrodynamic flow lead not only to jetting, but
also unveils a new pearling instability. This illustrates new structuring
capabilities of driven active matter