Objective: The study investigates the effect on cooperation in multiplayer
games, when the population from which all individuals are drawn is structured -
i.e. when a given individual is only competing with a small subset of the
entire population.
Method: To optimize the focus on multiplayer effects, a class of games were
chosen for which the payoff depends nonlinearly on the number of cooperators -
this ensures that the game cannot be represented as a sum of pair-wise
interactions, and increases the likelihood of observing behaviour different
from that seen in two-player games. The chosen class of games are named
"threshold games", and are defined by a threshold, M>0, which describes the
minimal number of cooperators in a given match required for all the
participants to receive a benefit. The model was studied primarily through
numerical simulations of large populations of individuals, each with
interaction neighbourhoods described by various classes of networks.
Results: When comparing the level of cooperation in a structured population
to the mean-field model, we find that most types of structure lead to a
decrease in cooperation. This is both interesting and novel, simply due to the
generality and breadth of relevance of the model - it is likely that any model
with similar payoff structure exhibits related behaviour.
More importantly, we find that the details of the behaviour depends to a
large extent on the size of the immediate neighbourhoods of the individuals, as
dictated by the network structure. In effect, the players behave as if they are
part of a much smaller, fully mixed, population, which we suggest an expression
for.Comment: in PLOS ONE, 4th Feb 201