Surface, image and video data can be considered as functional data with a
bivariate domain. To detect outlying surfaces or images, a new method is
proposed based on the mean and the variability of the degree of outlyingness at
each grid point. A rule is constructed to flag the outliers in the resulting
functional outlier map. Heatmaps of their outlyingness indicate the regions
which are most deviating from the regular surfaces. The method is applied to
fluorescence excitation-emission spectra after fitting a PARAFAC model, to MRI
image data which are augmented with their gradients, and to video surveillance
data