For a set of equation of state (EoS) models involving interacting strange
quark matter, characterized by an effective bag constant (B_eff) and a
perturbative QCD corrections term (a_4), we construct fully general
relativistic equilibrium sequences of rapidly spinning strange stars for the
first time. Computation of such sequences is important to study millisecond
pulsars and other fast spinning compact stars. Our EoS models can support a
gravitational mass (M_G) and a spin frequency at least up to approximately 3.0
solar mass and approximately 1250 Hz respectively, and hence are fully
consistent with measured M_G and spin frequency values. This paper reports the
effects of B_eff and a_4 on measurable compact star properties, which could be
useful to find possible ways to constrain these fundamental quark matter
parameters, within the ambit of our EoS models. We confirm that a lower B_eff
allows a higher mass. Besides, for known M_G and spin frequency, measurable
parameters, such as stellar radius, radius-to-mass ratio and moment of inertia,
increase with the decrease of B_eff. Our calculations also show that a_4
significantly affects the stellar rest mass and the total stellar binding
energy. As a result, a_4 can have signatures in evolutions of both accreting
and non-accreting compact stars, and the observed distribution of stellar mass
and spin and other source parameters. Finally, we compute the parameter values
of two important pulsars, PSR J1614-2230 and PSR J1748-2446ad, which may have
implications to probe their evolutionary histories, and for constraining EoS
models.Comment: 17 pages, 11 figures, 7 tables, accepted for publication in Monthly
Notices of the Royal Astronomical Societ