research

Parameterized Algorithms on Perfect Graphs for deletion to (r,)(r,\ell)-graphs

Abstract

For fixed integers r,0r,\ell \geq 0, a graph GG is called an {\em (r,)(r,\ell)-graph} if the vertex set V(G)V(G) can be partitioned into rr independent sets and \ell cliques. The class of (r,)(r, \ell) graphs generalizes rr-colourable graphs (when =0)\ell =0) and hence not surprisingly, determining whether a given graph is an (r,)(r, \ell)-graph is \NP-hard even when r3r \geq 3 or 3\ell \geq 3 in general graphs. When rr and \ell are part of the input, then the recognition problem is NP-hard even if the input graph is a perfect graph (where the {\sc Chromatic Number} problem is solvable in polynomial time). It is also known to be fixed-parameter tractable (FPT) on perfect graphs when parameterized by rr and \ell. I.e. there is an f(r+\ell) \cdot n^{\Oh(1)} algorithm on perfect graphs on nn vertices where ff is some (exponential) function of rr and \ell. In this paper, we consider the parameterized complexity of the following problem, which we call {\sc Vertex Partization}. Given a perfect graph GG and positive integers r,,kr,\ell,k decide whether there exists a set SV(G)S\subseteq V(G) of size at most kk such that the deletion of SS from GG results in an (r,)(r,\ell)-graph. We obtain the following results: \begin{enumerate} \item {\sc Vertex Partization} on perfect graphs is FPT when parameterized by k+r+k+r+\ell. \item The problem does not admit any polynomial sized kernel when parameterized by k+r+k+r+\ell. In other words, in polynomial time, the input graph can not be compressed to an equivalent instance of size polynomial in k+r+k+r+\ell. In fact, our result holds even when k=0k=0. \item When r,r,\ell are universal constants, then {\sc Vertex Partization} on perfect graphs, parameterized by kk, has a polynomial sized kernel. \end{enumerate

    Similar works