The conventional seesaw-leptogenesis can simultaneously explain the
suppression of neutrino masses and the generation of cosmic baryon asymmetry,
but usually cannot predict an unambiguous relation between these two sectors.
In this work we shall demonstrate a novel left-right symmetric scenario,
motivated to solve the strong CP problem by parity symmetry, where the present
baryon asymmetry is determined by three charged lepton masses and a
seesaw-suppressed hermitian Dirac neutrino mass matrix up to an overall scale
factor. To produce the observed baryon asymmetry, this scenario requires that
the neutrinos must have a normal hierarchical mass spectrum and their mixing
matrix must contain a sizable Dirac CP phase. Our model can be tested in
neutrino oscillation and neutrinoless double beta decay experiments.Comment: 5 pages, 2 figures. Typos are correcte