Lattice models of fermions, bosons, and spins have long served to elucidate
the essential physics of quantum phase transitions in a variety of systems.
Generalizing such models to incorporate driving and dissipation has opened new
vistas to investigate nonequilibrium phenomena and dissipative phase
transitions in interacting many-body systems. We present a framework for the
treatment of such open quantum lattices based on a resummation scheme for the
Lindblad perturbation series. Employing a convenient diagrammatic
representation, we utilize this method to obtain relevant observables for the
open Jaynes-Cummings lattice, a model of special interest for open-system
quantum simulation. We demonstrate that the resummation framework allows us to
reliably predict observables for both finite and infinite Jaynes-Cummings
lattices with different lattice geometries. The resummation of the Lindblad
perturbation series can thus serve as a valuable tool in validating open
quantum simulators, such as circuit-QED lattices, currently being investigated
experimentally.Comment: 15 pages, 9 figure