Deep CCA is a recently proposed deep neural network extension to the
traditional canonical correlation analysis (CCA), and has been successful for
multi-view representation learning in several domains. However, stochastic
optimization of the deep CCA objective is not straightforward, because it does
not decouple over training examples. Previous optimizers for deep CCA are
either batch-based algorithms or stochastic optimization using large
minibatches, which can have high memory consumption. In this paper, we tackle
the problem of stochastic optimization for deep CCA with small minibatches,
based on an iterative solution to the CCA objective, and show that we can
achieve as good performance as previous optimizers and thus alleviate the
memory requirement.Comment: in 2015 Annual Allerton Conference on Communication, Control and
Computin