We propose a generalized partially linear functional single index risk score
model for repeatedly measured outcomes where the index itself is a function of
time. We fuse the nonparametric kernel method and regression spline method, and
modify the generalized estimating equation to facilitate estimation and
inference. We use local smoothing kernel to estimate the unspecified
coefficient functions of time, and use B-splines to estimate the unspecified
function of the single index component. The covariance structure is taken into
account via a working model, which provides valid estimation and inference
procedure whether or not it captures the true covariance. The estimation method
is applicable to both continuous and discrete outcomes. We derive large sample
properties of the estimation procedure and show a different convergence rate
for each component of the model. The asymptotic properties when the kernel and
regression spline methods are combined in a nested fashion has not been studied
prior to this work, even in the independent data case.Comment: Published at http://dx.doi.org/10.1214/15-AOS1330 in the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org