Humans connect language and vision to perceive the world. How to build a
similar connection for computers? One possible way is via visual concepts,
which are text terms that relate to visually discriminative entities. We
propose an automatic visual concept discovery algorithm using parallel text and
visual corpora; it filters text terms based on the visual discriminative power
of the associated images, and groups them into concepts using visual and
semantic similarities. We illustrate the applications of the discovered
concepts using bidirectional image and sentence retrieval task and image
tagging task, and show that the discovered concepts not only outperform several
large sets of manually selected concepts significantly, but also achieves the
state-of-the-art performance in the retrieval task.Comment: To appear in ICCV 201