In recent years, the crucial importance of metrics in machine learning
algorithms has led to an increasing interest for optimizing distance and
similarity functions. Most of the state of the art focus on learning
Mahalanobis distances (requiring to fulfill a constraint of positive
semi-definiteness) for use in a local k-NN algorithm. However, no theoretical
link is established between the learned metrics and their performance in
classification. In this paper, we make use of the formal framework of good
similarities introduced by Balcan et al. to design an algorithm for learning a
non PSD linear similarity optimized in a nonlinear feature space, which is then
used to build a global linear classifier. We show that our approach has uniform
stability and derive a generalization bound on the classification error.
Experiments performed on various datasets confirm the effectiveness of our
approach compared to state-of-the-art methods and provide evidence that (i) it
is fast, (ii) robust to overfitting and (iii) produces very sparse classifiers.Comment: Appears in Proceedings of the 29th International Conference on
Machine Learning (ICML 2012