Aims: We study the influence of rotation and disc lifetime on lithium
depletion of pre-main sequence (PMS) solar-type stars. Methods: The impact of
rotational mixing and of the hydrostatic effects of rotation on lithium
abundances are investigated by computing non-rotating and rotating PMS models
that include a comprehensive treatment of shellular rotation. The influence of
the disc lifetime is then studied by comparing the lithium content of PMS
rotating models experiencing different durations of the disc-locking phase
between 3 and 9 Myr. Results: The surface lithium abundance at the end of the
PMS is decreased when rotational effects are included. During the beginning of
the lithium depletion phase, only hydrostatic effects of rotation are at work.
This results in a decrease in the lithium depletion rate for rotating models
compared to non-rotating ones. When the convective envelope recedes from the
stellar centre, rotational mixing begins to play an important role due to
differential rotation near the bottom of the convective envelope. This mixing
results in a decrease in the surface lithium abundance with a limited
contribution from hydrostatic effects of rotation, which favours lithium
depletion during the second part of the PMS evolution. The impact of rotation
on PMS lithium depletion is also found to be sensitive to the duration of the
disc-locking phase. When the disc lifetime increases, the PMS lithium abundance
of a solar-type star decreases owing to the higher efficiency of rotational
mixing in the radiative zone. A relationship between the surface rotation and
lithium abundance at the end of the PMS is then obtained: slow rotators on the
zero-age main sequence are predicted to be more lithium-depleted than fast
rotators due to the increase in the disc lifetime.Comment: 8 pages, 11 figures, A&