本論文主要目的為設計出可平穩移動之雙足步行機器人行走軌跡,製作低成本之伺服控制器,及抑制不可預期之誤差。
研究中使用之受控體是由日本KONDO公司所生產之KHR-1雙足式機器人再額外加裝轉向擴充模組,機身總共包含19個自由度,腳部12個、手部6個以及頭部1個,而控制器方面採用四顆AT89C4051單晶片與1顆S3C2440 ARM9微控制器互相串接而成,晶片彼此之間利用串列主從式多處理機通信進行傳輸。在感測器方面則選擇了可量測機身平衡度之元件,包含有加速度計與陀螺儀,並藉由外接之A/D轉換晶片轉換成數位訊號,藉以量測機身之傾斜角度與角速度。
在軌跡規劃方面採用了離線式(Off-Line)軌跡設計法,經由仿人類步態之分析下,設計出高速且可靠之擺動軌跡,再由矩陣式運動學求解轉軸之轉動角度,利用零力矩點(Zero Moment Point)公式檢驗其軌跡於正常行走下之穩定性,以及可達穩定之最高速軌跡。
在步行之同時,利用Fuzzy控制器修正機身不正常傾斜角,降低非預期誤差所造成之不穩定性。The main purpose of this research is to design a stable walking trajectory for biped robot. It's also hope to produce a low cost servo controller and use high-level controller to reduce unpredictable error.
In this research, KHR-1 biped robot which is made by KONDO Inc. Japan, is used with an extra turning module, the robot contains nineteen degrees of freedom, consists of twelve servo motors on the legs, six servo motors on the hands, and one on the head. The controller of this robot is consisted of four Atmel AT89C4051 and one S3C2440 ARM9 microcontrollers. These microcontrollers communicate by the master-slave serial transmission. Gyros and accelerometers are used to body's measure the trunk's tilt angle and angular velocity for the balancing of the robot. The sensors' signals are capturing by an extra A/D convertor chip.
In trajectory planning it's then solved by human like walking is used to analysis to find a suitable trajectory and solve it by the off-line trajectory designed method. The rotation angle and mass point position are calculated by homogeneous transformation matrixes, then put it into the Zero-Moment-Point formula is used to check its stability and find its highest walking speed.
During the motion of robot walking, we use fuzzy controller is used to revise the abnormal tilt and improve unstable causing by unpredictable error.摘要...........................................i
Abstract......................................ii
致謝.........................................iii
目錄..........................................iv
圖目錄.......................................vii
表目錄.........................................x
第1章 緒論....................................1
1.1背景........................................1
1.2 文獻回顧...................................2
1.3 研究目的...................................5
1.4 論文架構...................................6
第2章 人形機器人軟硬體架構....................7
2.1機器人結構..................................7
2.1.1 KHR-1(附加轉彎自由度)....................7
2.1.2伺服馬達(KRS-786ICS Red Version)..........9
2.2感測器.....................................11
2.2.1雙軸高精度陀螺儀(Core: IDG300)...........11
2.2.2雙軸加速度計(傾斜計)(Core: Memsic 2125)..13
2.3控制器選用.................................16
2.3.1 DMA2440.................................16
2.3.2 AT89C4051...............................19
2.4整合控制板設計.............................20
2.5軟體規劃...................................22
2.5.1低階伺服系統.............................22
2.5.2 通訊機制................................23
2.5.3 訊號整合與ARM9命令控制..................26
第3章 人形機器人運動學.......................31
3.1座標系統...................................31
3.2機器人之重心位置...........................34
3.3運動學.....................................36
3.3.1運動學介紹...............................36
3.3.2順向運動學...............................37
3.3.3反向運動學...............................39
3.4零力矩點...................................41
第4章 人形機器人步行分析與設計...............44
4.1人類步行分析...............................44
4.2仿人類步行分析.............................44
4.3人形機器人步行設計.........................45
4.3.1擺動腳軌跡設計...........................46
4.3.2軀幹移動軌跡設計.........................47
4.3.3軌跡模擬&靜/動態穩定度分析..............48
第5章 實驗結果...............................56
5.1開迴路測試結果.............................58
5.2加入FUZZY控制器修正之結果..................60
第6章 結論與未來展望.........................65
6.1結論.......................................65
6.2未來展望...................................65
參考文獻......................................6