research

Lowering topological entropy over subsets revisited

Abstract

Let (X,T)(X, T) be a topological dynamical system. Denote by h(T,K)h (T, K) and hB(T,K)h^B (T, K) the covering entropy and dimensional entropy of KβŠ†XK\subseteq X, respectively. (X,T)(X, T) is called D-{\it lowerable} (resp. {\it lowerable}) if for each 0≀h≀h(T,X)0\le h\le h (T, X) there is a subset (resp. closed subset) KhK_h with hB(T,Kh)=hh^B (T, K_h)= h (resp. h(T,Kh)=hh (T, K_h)= h); is called D-{\it hereditarily lowerable} (resp. {\it hereditarily lowerable}) if each Souslin subset (resp. closed subset) is D-lowerable (resp. lowerable). In this paper it is proved that each topological dynamical system is not only lowerable but also D-lowerable, and each asymptotically hh-expansive system is D-hereditarily lowerable. A minimal system which is lowerable and not hereditarily lowerable is demonstrated.Comment: All comments are welcome. Transactions of the American Mathematical Society, to appea

    Similar works

    Full text

    thumbnail-image

    Available Versions