research

Linear Information Coupling Problems

Abstract

Many network information theory problems face the similar difficulty of single letterization. We argue that this is due to the lack of a geometric structure on the space of probability distribution. In this paper, we develop such a structure by assuming that the distributions of interest are close to each other. Under this assumption, the K-L divergence is reduced to the squared Euclidean metric in an Euclidean space. Moreover, we construct the notion of coordinate and inner product, which will facilitate solving communication problems. We will also present the application of this approach to the point-to-point channel and the general broadcast channel, which demonstrates how our technique simplifies information theory problems.Comment: To appear, IEEE International Symposium on Information Theory, July, 201

    Similar works