research

Counting Dyck paths by area and rank

Abstract

The set of Dyck paths of length 2n2n inherits a lattice structure from a bijection with the set of noncrossing partitions with the usual partial order. In this paper, we study the joint distribution of two statistics for Dyck paths: \emph{area} (the area under the path) and \emph{rank} (the rank in the lattice). While area for Dyck paths has been studied, pairing it with this rank function seems new, and we get an interesting (q,t)(q,t)-refinement of the Catalan numbers. We present two decompositions of the corresponding generating function: one refines an identity of Carlitz and Riordan; the other refines the notion of γ\gamma-nonnegativity, and is based on a decomposition of the lattice of noncrossing partitions due to Simion and Ullman. Further, Biane's correspondence and a result of Stump allow us to conclude that the joint distribution of area and rank for Dyck paths equals the joint distribution of length and reflection length for the permutations lying below the nn-cycle (12...n)(12...n) in the absolute order on the symmetric group.Comment: 24 pages, 7 figures. Connections with work of C. Stump (arXiv:0808.2822v2) eliminated the need for 5 pages of proof in the first draf

    Similar works

    Full text

    thumbnail-image

    Available Versions