research

Stokes flow in a half-filled annulus between rotating coaxial cylinders

Abstract

A model is presented for viscous flow in a cylindrical cavity (a half-filled annulus lying between horizontal, infinitely long concentric cylinders of radii R-i,R-0 rotating with peripheral speeds U-i,U-0). Stokes' approximation is used to formulate a boundary value problem which is solved for the streamfunction, phi, as a function of radius ratio (R) over bar = R-i/R-0 and speed ratio S = U-i/U-0. Results show that for S > 0 (S 1, a sequence of 'flow bifurcations' leads to a flow structure consisting of a set of nested separatrices, and provides the means by which the two-dimensional cavity flow approaches quasi-unidirectional flow in the small gap limit. Control-space diagrams reveal that speed ratio has little effect on the flow structure when S 0 and aspect ratios are small (except near S = 1). For S > 0 and moderate to large aspect ratios the bifurcation characteristics of the two large eddies are quite different and depend on both (R) over bar and S

    Similar works