Inferring bulk self-assembly properties from simulations of small
systems with multiple constituent species and small systems in the grand
canonical ensemble
In this paper we generalize a methodology [T. E. Ouldridge, A. A. Louis, and
J. P. K. Doye, J. Phys.: Condens. Matter {\bf 22}, 104102 (2010)] for dealing
with the inference of bulk properties from small simulations of self-assembling
systems of characteristic finite size. In particular, schemes for extrapolating
the results of simulations of a single self-assembling object to the bulk limit
are established in three cases: for assembly involving multiple particle
species, for systems with one species localized in space and for simulations in
the grand canonical ensemble. Furthermore, methodologies are introduced for
evaluating the accuracy of these extrapolations. Example systems demonstrate
that differences in cluster concentrations between simulations of a single
self-assembling structure and bulk studies of the same model under identical
conditions can be large, and that convergence on bulk results as system size is
increased can be slow and non-trivial.Comment: Accepted by J. Chem. Phy