research

A bivariate chromatic polynomial for signed graphs

Abstract

We study Dohmen--P\"onitz--Tittmann's bivariate chromatic polynomial cΓ(k,l)c_\Gamma(k,l) which counts all (k+l)(k+l)-colorings of a graph Γ\Gamma such that adjacent vertices get different colors if they are k\le k. Our first contribution is an extension of cΓ(k,l)c_\Gamma(k,l) to signed graphs, for which we obtain an inclusion--exclusion formula and several special evaluations giving rise, e.g., to polynomials that encode balanced subgraphs. Our second goal is to derive combinatorial reciprocity theorems for cΓ(k,l)c_\Gamma(k,l) and its signed-graph analogues, reminiscent of Stanley's reciprocity theorem linking chromatic polynomials to acyclic orientations.Comment: 8 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions