Removal of the quenched approximation in the mechanism which produced an
analytic estimate of quark-binding potentials, along with a reasonable
conjecture of the color structure of the nucleon formed by such a binding
potential, is shown to generate an effective, nucleon scattering and binding
potential. The mass-scale factor on the order of the pion mass, previously
introduced to define transverse imprecision of quark coordinates, is again
used, while the strength of the potential is proportional to the square of a
renormalized QCD coupling constant. The potential so derived does not include
corrections due to spin, angular momentum, nucleon structure, and electroweak
interactions; rather, it is qualitative in nature, showing how Nuclear Physics
can arise from fundamental QCD.Comment: 25 pages, 3 figures in REVTeX. The fifth of a series on
Non-Perturbative QCD (Eur. Phys. J. C65, 395 (2010) or arXiv:0903.2644
[hep-th], arXiv:1003.2936 [hep-th], arXiv:1103.4179 [hep-th] and
arXiv:1104.4663 [hep-th].