In order to support the design and study of sophisticated large scale
transition edge sensor (TES) circuits, we use basic SPICE elements to develop
device models for TESs based on the superfluid-normal fluid theory. In contrast
to previous studies, our device model is not limited to small signal
simulation, and it relies only on device parameters that have clear physical
meaning and can be easily measured. We integrate the device models in design
kits based on powerful EDA tools such as CADENCE and OrCAD, and use them for
versatile simulations of TES circuits. Comparing our simulation results with
published experimental data, we find good agreement which suggests that device
models based on the two-fluid theory can be used to predict the behavior of TES
circuits reliably and hence they are valuable for assisting the design of
sophisticated TES circuits.Comment: 10pages,11figures. Accepted to IEEE Trans. Appl. Supercon