The vortex lattice (VL) symmetry and orientation in clean type-II
superconductors depends sensitively on the host material anisotropy, vortex
density and temperature, frequently leading to rich phase diagrams. Typically,
a well-ordered VL is taken to imply a ground state configuration for the
vortex-vortex interaction. Using neutron scattering we studied the VL in MgB2
for a number of field-temperature histories, discovering an unprecedented
degree of metastability in connection with a known, second-order rotation
transition. This allows, for the first time, structural studies of a
well-ordered, non-equilibrium VL. While the mechanism responsible for the
longevity of the metastable states is not resolved, we speculate it is due to a
jamming of VL domains, preventing a rotation to the ground state orientation.Comment: Main paper: 5 pages, 4 figures. Supplementary material: 3 pages, 7
figure