'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
Abstract—This paper provides a systematic comparative
study of compensation schemes for the coordinated motion
control of two-inertia mechanical systems. Specifically, classical proportional–integral (PI), proportional–integral–derivative (PID), and resonance ratio control (RRC) are considered, with an enhanced structure based on RRC, termed RRC+, being proposed. Motor-side and load-side dynamics for each control structure are identified, with the “integral of time multiplied by absolute
error” performance index being employed as a benchmark metric. PID and RRC control schemes are shown to be identical from a closed-loop perspective, albeit employing different feedback sensing mechanisms. A qualitative study of the practical effects of employing each methodology shows that RRC-type structures
provide preferred solutions if low-cost high-performance torque transducers can be employed, for instance, those based on surface acoustic wave tecnologies. Moreover, the extra degree of freedom afforded by both PID and RRC, as compared with the basic PI, is shown to be sufficient to simultaneously induce optimal closed-loop performance and independent selection of virtual inertia ratio. Furthermore, the proposed RRC+ scheme is subsequently
shown to additionally facilitate independent assignment
of closed-loop bandwidth. Summary attributes of the investigation are validated by both simulation studies and by realization of the methodologies for control of a custom-designed two-inertia system