Significance
“Shelter in place” (SIP) orders have been deployed to slow the spread of SARS-CoV-2, but they induce social isolation that may paradoxically weaken antiviral immunity. We examined the impact of 2-wk SIP on immune cell population dynamics and gene regulation in 21 adult rhesus macaques, finding 30 to 50% declines in circulating immune cells, decreases in antiviral gene expression, and increased inflammatory cells in blood and inflammatory gene expression in lymph nodes. Declines in antiviral gene expression (but not circulating immune cells) were blocked by the presence of a novel juvenile partner during SIP, suggesting a potential strategy for maintaining antiviral immunity during SIP by enhancing prosocial engagement.</jats:p