A Brassica rapa rapa L. line has been identified with high resistance to seven isolates of Turnip mosaic virus (TuMV) (including UK 1, CHN 5, CZE 1, CDN 1, GBR 6, POL 1 and UK 4) representing the major pathotypes of the virus. Resistant plants showed no symptoms following mechanical inoculation with TuMV and no virus was detected in the plants by ELISA. A cross was made between the rapid-cycling Brassica rapa line R-o-18 (which has been found to be susceptible to all the TuMV isolates) and a plant from the resistant B. rapa rapa line. The small amount of the F1 generation seed available from this cross has been grown and inoculated with the seven TuMV isolates. F1 plants were uniformly resistant to the UK 1 isolate of TuMV, uniformly susceptible to the CHN 5 isolate (only 2 plants inoculated) and segregated for resistance and susceptibility to the other five TuMV isolates. This suggested that the parent B. rapa rapa plant used in the cross was probably homozygous for one, or more dominant resistance genes to the UK 1 isolate of TuMV and heterozygous for one, or more dominant resistance genes to the other TuMV isolates. When self seed (S1) from the parent plant from the resistant line was inoculated with the TuMV isolates GBR 6 and UK 4, the segregation for the former isolate was not significantly different from 3 resistant to 1 susceptible, whereas for the latter isolate, the segregation was 4 resistant to 9 susceptible, suggesting resistance to GBR 6 is controlled by a single dominant gene, whereas resistance to UK 4 is controlled by two or more dominant resistance genes. The putative resistance genes appear to confer hitherto unknown dominant TuMV resistance specificities, and in combination have the exciting potential of providing durable resistance to TuMV