A note on dissipative particle dynamics (DPD) modelling of simple fluids

Abstract

In this paper, we show that a Dissipative Particle Dynamics (DPD) model of a viscous Newtonian fluid may actually produce a linear viscoelastic fluid. We demonstrate that a single set of DPD particles can be used to model a linear viscoelastic fluid with its physical parameters, namely the dynamical viscosity and the relaxation time in its memory kernel, determined from the DPD system at equilibrium. The emphasis of this study is placed on (i) the estimation of the linear viscoelastic effect from the standard parameter choice; and (ii) the investigation of the dependence of the DPD transport properties on the length and time scales, which are introduced from the physical phenomenon under examination. Transverse-current auto-correlation functions (TCAF) in Fourier space are employed to study the effects of the length scale, while analytic expressions of the shear stress in a simple small amplitude oscillatory shear flow are utilised to study the effects of the time scale. A direct mechanism for imposing the particle diffusion time and fluid viscosity in the hydrodynamic limit on the DPD system is also proposed

    Similar works