research

On the Reduction of Errors in DNA Computation

Abstract

In this paper, we discuss techniques for reducing errors in DNA computation. We investigate several methods for achieving acceptable overall error rates for a computation using basic operations that are error prone. We analyze a single essential biotechnology, sequence-specific separation, and show that separation errors theoretically can be reduced to tolerable levels by invoking a tradeoff between time, space, and error rates at the level of algorithm design. These tradeoffs do not depend upon improvement of the underlying biotechnology which implements the separation step. We outline several specific ways in which error reduction can be done and present numerical calculations of their performance

    Similar works