research

Binary black hole coalescence in the extreme-mass-ratio limit: Testing and improving the effective-one-body multipolar waveform

Abstract

We discuss the properties of the effective-one-body (EOB) multipolar gravitational waveform emitted by nonspinning black-hole binaries of masses and M in the extreme-mass-ratio limit µ/M = v « 1. We focus on the transition from quasicircular inspiral to plunge, merger, and ringdown. We compare the EOB waveform to a Regge-Wheeler-Zerilli waveform computed using the hyperboloidal layer method and extracted at null infinity. Because the EOB waveform keeps track analytically of most phase differences in the early inspiral, we do not allow for any arbitrary time or phase shift between the waveforms. The dynamics of the particle, common to both wave-generation formalisms, is driven by a leading-order O(v) analytically resummed radiation reaction. The EOB and the Regge-Wheeler-Zerilli waveforms have an initial dephasing of about 5 X 10^(-4) rad and maintain then a remarkably accurate phase coherence during the long inspiral (~33 orbits), accumulating only about -2 X 10^(-3) rad until the last stable orbit, i.e. ΔØ/Ø~-5.95 X 10^(-6). We obtain such accuracy without calibrating the analytically resummed EOB waveform to numerical data, which indicates the aptitude of the EOB waveform for studies concerning the Laser Interferometer Space Antenna. We then improve the behavior of the EOB waveform around merger by introducing and tuning next-to-quasicircular corrections in both the gravitational wave amplitude and phase. For each multipole we tune only four next-to-quasicircular parameters by requiring compatibility between EOB and Regge-Wheeler-Zerilli waveforms at the light ring. The resulting phase difference around the merger time is as small as ±0.015 rad, with a fractional amplitude agreement of 2.5%. This suggest that next-to-quasicircular corrections to the phase can be a useful ingredient in comparisons between EOB and numerical-relativity waveforms

    Similar works